Numerical simulation of dust deposition on rooftop of photovoltaic parking lots supporting electric vehicles charging

verfasst von
Mohsen Abdolahzadeh, Nima Parsa Mofrad, Ali Tayebi
Abstract

Dust deposition on Photovoltaic (PV) surfaces reduces the amount of radiation received by the solar cell, which decreases the energy output of solar PV systems. In this study, the process of dust deposition on three different photovoltaic parking lot structures, including a mono-pitch canopy, a duo-pitch canopy, and a barrel-arch canopy is numerically investigated for the first time. The results show that a slight variation of the tilt angle has no significant effect on the dust deposition behavior. However, the size of the dust particles has a strong influence on the amount of dust deposition. The tendency for dust deposition is found to increase first for small-sized particles and then to decrease with increasing particle diameter. Duo-pitch electric vehicles parking lots (EVsPLs) provide better performance against dust deposition compared to the other EVsPLs for most particle diameters. Mono-pitch EVsPLs, however, are more effective than the others at lower Reynolds number, Re=143,000, and small-sized particles for dp≤10 μm. In addition, medium-sized particles, 50<dp<200 μm, are found to be more prone to deposit on PV surfaces. The main novelty of the present study is that it offers a new perspective on the selection of the best structure of parking lots depending on environmental conditions, especially in areas with high dust concentration.

Organisationseinheit(en)
Fakultät für Maschinenbau
Externe Organisation(en)
Justus-Liebig-Universität Gießen
Yasouj University
Typ
Artikel
Journal
Journal of Wind Engineering and Industrial Aerodynamics
Band
239
ISSN
0167-6105
Publikationsdatum
08.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Tief- und Ingenieurbau, Erneuerbare Energien, Nachhaltigkeit und Umwelt, Maschinenbau
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1016/j.jweia.2023.105444 (Zugang: Geschlossen)