Impact of the contacting scheme on I-V measurements of metallization-free silicon heterojunction solar cells

verfasst von
Malte Brinkmann, Felix Haase, Karsten Bothe, Karsten Bittkau, Andreas Lambertz, Weiyuan Duan, Kaining Ding, Hans Peter Sperlich, Andreas Waltinger, Henning Schulte-Huxel
Abstract

I-V measurements are sensitive to the number and positioning of current and voltage sensing contacts. For busbarless solar cells, measurement setups have been developed using current collection wires and separate voltage sense contacts. Placing the latter at a defined position enables a grid resistance neglecting measurement and thus I-V characteristics independent from the contacting system. This technique has been developed for solar cells having a finger grid and good conductivity in the direction of the fingers. The optimal position of the sense contact in case of finger-free silicon heterojunction solar cells has not yet been studied. Here, the lateral charge carrier transport occurs in a transparent conductive oxide layer resulting in a higher lateral resistance. We perform finite difference method simulations of HJT solar cells without front metallization to investigate the impact of high lateral resistances on the I-V measurement of solar cells. We show the high sensitivity on the number of used wires for contacting as well as the position of the sense contact for the voltage measurement. Using the simulations, we are able to explain the high difference of up to 7.5% in fill factor measurements of metal free solar cells with varying TCO sheet resistances between two measurement systems using different contacting setups. We propose a method to compensate for the contacting system to achieve a grid-resistance neglecting measurement with both systems allowing a reduction of the FF difference to below 1.5%.

Organisationseinheit(en)
Institut für Festkörperphysik
Externe Organisation(en)
Institut für Solarenergieforschung GmbH (ISFH)
Forschungszentrum Jülich
Meyer Burger Technology AG
Typ
Artikel
Journal
EPJ Photovoltaics
Band
14
Publikationsdatum
26.04.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Erneuerbare Energien, Nachhaltigkeit und Umwelt, Physik der kondensierten Materie, Elektrotechnik und Elektronik
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1051/epjpv/2023009 (Zugang: Offen)