Using causal inference to avoid fallouts in data-driven parametric analysis

A case study in the architecture, engineering, and construction industry

verfasst von
Xia Chen, Ruiji Sun, Ueli Saluz, Stefano Schiavon, Philipp Geyer
Abstract

The decision-making process in real-world implementations has been affected by a growing reliance on data-driven models. Recognizing the limitations of isolated methodologies - namely, the lack of domain understanding in data-driven models, the subjective nature of empirical knowledge, and the idealized assumptions in first-principles simulations, we explore their synergetic integration. We showed the potential risk of biased results when using data-driven models without causal analysis. Through a case study on energy consumption in building design, we demonstrate how causal analysis significantly enhances the modeling process, mitigating biases and spurious correlations. We concluded that: (a) Sole data-driven models' accuracy assessment or domain knowledge screening may not rule out biased and spurious results; (b) Data-driven models' feature selection should involve careful consideration of causal relationships, especially colliders; (c) Integrating causal analysis results aid to first-principles simulation design and parameter checking to avoid cognitive biases. We advocate for the routine integration of causal inference within data-driven models in engineering practices, emphasizing its critical role in ensuring the models' reliability and real-world applicability.

Organisationseinheit(en)
Institut für Entwerfen und Konstruieren
Externe Organisation(en)
University of California at Berkeley
Typ
Artikel
Journal
Developments in the Built Environment
Band
17
Anzahl der Seiten
12
Publikationsdatum
03.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Architektur, Tief- und Ingenieurbau, Bauwesen, Werkstoffwissenschaften (sonstige), Angewandte Informatik, Computergrafik und computergestütztes Design
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2309.1150 (Zugang: Offen)
https://doi.org/10.1016/j.dibe.2023.100296 (Zugang: Offen)