Using causal inference to avoid fallouts in data-driven parametric analysis
A case study in the architecture, engineering, and construction industry
- verfasst von
- Xia Chen, Ruiji Sun, Ueli Saluz, Stefano Schiavon, Philipp Geyer
- Abstract
The decision-making process in real-world implementations has been affected by a growing reliance on data-driven models. Recognizing the limitations of isolated methodologies - namely, the lack of domain understanding in data-driven models, the subjective nature of empirical knowledge, and the idealized assumptions in first-principles simulations, we explore their synergetic integration. We showed the potential risk of biased results when using data-driven models without causal analysis. Through a case study on energy consumption in building design, we demonstrate how causal analysis significantly enhances the modeling process, mitigating biases and spurious correlations. We concluded that: (a) Sole data-driven models' accuracy assessment or domain knowledge screening may not rule out biased and spurious results; (b) Data-driven models' feature selection should involve careful consideration of causal relationships, especially colliders; (c) Integrating causal analysis results aid to first-principles simulation design and parameter checking to avoid cognitive biases. We advocate for the routine integration of causal inference within data-driven models in engineering practices, emphasizing its critical role in ensuring the models' reliability and real-world applicability.
- Organisationseinheit(en)
-
Institut für Entwerfen und Konstruieren
- Externe Organisation(en)
-
University of California at Berkeley
- Typ
- Artikel
- Journal
- Developments in the Built Environment
- Band
- 17
- Anzahl der Seiten
- 12
- Publikationsdatum
- 03.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Architektur, Tief- und Ingenieurbau, Bauwesen, Werkstoffwissenschaften (sonstige), Angewandte Informatik, Computergrafik und computergestütztes Design
- Ziele für nachhaltige Entwicklung
- SDG 7 – Erschwingliche und saubere Energie
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2309.1150 (Zugang:
Offen)
https://doi.org/10.1016/j.dibe.2023.100296 (Zugang: Offen)