Retrain AI Systems Responsibly! Use Sustainable Concept Drift Adaptation Techniques
- verfasst von
- Lorena Poenaru-Olaru, June Sallou, Luis Miranda da Cruz, Jan S. Rellermeyer, Arie van Deursen
- Abstract
Deployed machine learning systems often suffer from accuracy degradation over time generated by constant data shifts, also known as concept drift. Therefore, these systems require regular maintenance, in which the machine learning model needs to be adapted to concept drift. The literature presents plenty of model adaptation techniques. The most common technique is periodically executing the whole training pipeline with all the data gathered until a particular point in time, yielding a massive energy footprint. In this paper, we propose a research path that uses concept drift detection and adaptation to enable sustainable AI systems.
- Organisationseinheit(en)
-
Institut für Systems Engineering
Fachgebiet Verlässliche und skalierbare Softwaresysteme
- Externe Organisation(en)
-
Delft University of Technology
- Typ
- Aufsatz in Konferenzband
- Seiten
- 17-18
- Anzahl der Seiten
- 2
- Publikationsdatum
- 2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Software, Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Ziele für nachhaltige Entwicklung
- SDG 7 – Erschwingliche und saubere Energie
- Elektronische Version(en)
-
https://doi.org/10.1109/greens59328.2023.00009 (Zugang:
Geschlossen)
http://resolver.tudelft.nl/uuid:d115c5ba-f671-4713-9513-a0c7c5abf7f1 (Zugang: Offen)