Efficient resilience analysis and decision-making for complex engineering systems
- verfasst von
- Julian Salomon
- betreut von
- Michael Beer
- Abstract
Moderne Gesellschaften sind weltweit zunehmend von der reibungslosen Funktionalität immer komplexer werdender Systeme, wie beispielsweise Infrastruktursysteme, digitale Systeme wie das Internet oder hochentwickelten Maschinen, abhängig. Sie bilden die Eckpfeiler unserer technologisch fortgeschrittenen Welt, und ihre Effizienz steht in direktem Zusammenhang mit unserem Wohlbefinden sowie dem Fortschritt der Gesellschaft. Diese wichtigen Systeme sind jedoch einer ständigen und breiten Palette von Bedrohungen natürlichen, technischen und anthropogenen Ursprungs ausgesetzt. Das Auftreten globaler Krisen wie die COVID-19-Pandemie und die anhaltende Bedrohung durch den Klimawandel haben die Anfälligkeit der weit verzweigten und voneinander abhängigen Systeme sowie die Unmöglichkeit einer Gefahrenvorhersage in voller Gänze eindrücklich verdeutlicht. Die Pandemie mit ihren weitreichenden und unerwarteten Auswirkungen hat gezeigt, wie ein externer Schock selbst die fortschrittlichsten Systeme zum Stillstand bringen kann, während der anhaltende Klimawandel immer wieder beispiellose Risiken für die Systemstabilität und -leistung hervorbringt. Diese globalen Krisen unterstreichen den Bedarf an Systemen, die nicht nur Störungen standhalten, sondern sich auch schnell und effizient von ihnen erholen können. Das Konzept der Resilienz und die damit verbundenen Entwicklungen umfassen diese Anforderungen: Analyse, Abwägung und Optimierung der Zuverlässigkeit, Robustheit, Redundanz, Anpassungsfähigkeit und Wiederherstellbarkeit von Systemen -- sowohl aus technischer als auch aus wirtschaftlicher Sicht. In dieser kumulativen Dissertation steht daher die Entwicklung umfassender und effizienter Instrumente für die Resilienz-basierte Analyse und Entscheidungsfindung von komplexen Systemen im Mittelpunkt. Das neu entwickelte Resilienz-Entscheidungsfindungsverfahren steht im Kern dieser Entwicklungen. Es basiert auf einem adaptierten systemischen Risikomaß, einer zeitabhängigen, probabilistischen Resilienzmetrik sowie einem Gittersuchalgorithmus und stellt eine bedeutende Innovation dar, da es Entscheidungsträgern ermöglicht, ein optimales Gleichgewicht zwischen verschiedenen Arten von Resilienz-steigernden Maßnahmen unter Berücksichtigung monetärer Aspekte zu identifizieren. Zunehmend weisen Systemkomponenten eine erhebliche Eigenkomplexität auf, was dazu führt, dass sie selbst als Systeme modelliert werden müssen. Hieraus ergeben sich Systeme aus Systemen mit hoher Komplexität. Um diese Herausforderung zu adressieren, wird eine neue Methodik abgeleitet, indem das zuvor eingeführte Resilienzrahmenwerk auf multidimensionale Anwendungsfälle erweitert und synergetisch mit einem etablierten Konzept aus der Zuverlässigkeitstheorie, der Überlebenssignatur, zusammengeführt wird. Der neue Ansatz kombiniert die Vorteile beider ursprünglichen Komponenten: Einerseits ermöglicht er einen direkten Vergleich verschiedener Resilienz-steigernder Maßnahmen aus einem mehrdimensionalen Suchraum, der zu einem optimalen Kompromiss in Bezug auf die Systemresilienz führt. Andererseits ermöglicht er durch die Separationseigenschaft der Überlebenssignatur eine signifikante Reduktion des Rechenaufwands. Sobald eine Subsystemstruktur berechnet wurde -- ein typischerweise rechenintensiver Prozess -- kann jede Charakterisierung des probabilistischen Ausfallverhaltens von Komponenten validiert werden, ohne dass die Struktur erneut berechnet werden muss. In der Realität sind Messungen, Expertenwissen sowie weitere Informationsquellen mit vielfältigen Unsicherheiten belastet. Hierfür wird eine effiziente Methode vorgeschlagen, die auf der Kombination von Überlebenssignatur, unscharfer Wahrscheinlichkeitstheorie und nicht-intrusiver stochastischer Simulation (NISS) basiert. Dadurch entsteht ein effizienter Ansatz zur Quantifizierung der Zuverlässigkeit komplexer Systeme unter Berücksichtigung des gesamten Unsicherheitsspektrums. Der neue Ansatz, der die vorteilhaften Eigenschaften seiner ursprünglichen Komponenten synergetisch zusammenführt, erreicht eine bedeutende Verringerung des Rechenaufwands aufgrund der Separationseigenschaft der Überlebenssignatur. Er erzielt zudem eine drastische Reduzierung der Stichprobengröße aufgrund der adaptierten NISS-Methode: Es wird nur eine einzige stochastische Simulation benötigt, um Unsicherheiten zu berücksichtigen. Die neue Methodik stellt nicht nur eine Neuerung auf dem Gebiet der Zuverlässigkeitsanalyse dar, sondern kann auch in das Resilienzrahmenwerk integriert werden. Für eine Resilienzanalyse von real existierenden Systemen ist die Berücksichtigung kontinuierlicher Komponentenfunktionalität unerlässlich. Diese wird in einer weiteren Neuentwicklung adressiert. Durch die Einführung der kontinuierlichen Überlebensfunktion und dem Konzept der Diagonal Approximated Signature als entsprechendes Ersatzmodell kann das bestehende Resilienzrahmenwerk sinnvoll erweitert werden, ohne seine grundlegenden Vorteile zu beeinträchtigen. Im Kontext der Regeneration komplexer Investitionsgüter wird ein umfassendes Analyserahmenwerk vorgestellt, um die Übertragbarkeit und Anwendbarkeit aller entwickelten Methoden auf komplexe Systeme jeglicher Art zu demonstrieren. Das Rahmenwerk integriert die zuvor entwickelten Methoden der Resilienz-, Zuverlässigkeits- und Unsicherheitsanalyse. Es bietet Entscheidungsträgern die Basis für die Identifikation resilienter Regenerationspfade in zweierlei Hinsicht: Zum einen im Sinne von Regenerationspfaden mit inhärenter Resilienz und zum anderen Regenerationspfade, die zu einer maximalen Systemresilienz unter Berücksichtigung technischer und monetärer Einflussgrößen des zu analysierenden komplexen Investitionsgutes führen. Zusammenfassend bietet diese Dissertation innovative Beiträge zur effizienten Resilienzanalyse und Entscheidungsfindung für komplexe Ingenieursysteme. Sie präsentiert universell anwendbare Methoden und Rahmenwerke, die flexibel genug sind, um beliebige Systemtypen und Leistungsmaße zu berücksichtigen. Dies wird in zahlreichen Fallstudien von willkürlichen Flussnetzwerken, funktionalen Modellen von Axialkompressoren bis hin zu substrukturierten Infrastruktursystemen mit mehreren tausend Einzelkomponenten demonstriert.
- Organisationseinheit(en)
-
Institut für Risiko und Zuverlässigkeit
- Typ
- Dissertation
- Anzahl der Seiten
- 233
- Publikationsdatum
- 2023
- Publikationsstatus
- Veröffentlicht
- Ziele für nachhaltige Entwicklung
- SDG 13 – Klimaschutzmaßnahmen
- Elektronische Version(en)
-
https://doi.org/10.15488/14355 (Zugang:
Offen)