Detecting public health indicators from the web for epidemic intelligence

verfasst von
Avaré Stewart, Marco Fisichella, Kerstin Denecke
Abstract

Recent pandemics such as Swine Flu, have caused concern for public health officials. Given the ever increasing pace at which infectious diseases can spread globally, officials must be prepared to react sooner and with greater epidemic intelligence gathering capabilities. However, state-of-the-art systems for Epidemic Intelligence have not kept the pace with the growing need for more robust public health event detection. In this paper, we propose an approach that shifts the paradigm for how public health events are detected. Instead of manually enumerating linguistic patterns to detect public health events in human language text (pattern matching); we propose the use of a statistical approaches, which instead learn the patterns of public health events in an automatic or unsupervised way.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Deutsche Akademie der Technikwissenschaften (acatech)
Typ
Aufsatz in Konferenzband
Seiten
10-17
Anzahl der Seiten
8
Publikationsdatum
2011
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Computernetzwerke und -kommunikation
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1007/978-3-642-23635-8_2 (Zugang: Unbekannt)