Photocatalytic H2 production and degradation of aqueous 2-chlorophenol over B/N-graphene-coated Cu0/TiO2

A DFT, experimental and mechanistic investigation

verfasst von
Lucy M. Ombaka, James D. McGettrick, Ekemena O. Oseghe, Osama Al-Madanat, Felix Rieck genannt Best, Titus A.M. Msagati, Matthew L. Davies, Thomas Bredow, Detlef W. Bahnemann
Abstract

Energy and environmental challenges are global concerns that scientists are interested in alleviating. It is on this premise that we prepared boron/nitrogen graphene-coated Cu0/TiO2 (B/N-graphene-coated Cu/TiO2) photocatalyst of varying B:N ratios with dual functionality of H2 production and 2-Chlorophenol (2-CP) degradation. In-situ coating of Cu0 with B/N-graphene is achieved via solvothermal synthesis and calcination under an inert atmosphere. All B/N-graphene-coated Cu/TiO2 exhibit higher photonic efficiencies (5.68%–7.06% at 300 < λ < 400 nm) towards H2 production than bare TiO2 (0.25% at 300 < λ < 400 nm). Varying the B:N ratio in graphene influences the efficiency of H2 generation. A B:N ratio of 0.08 yields the most active composite exhibiting a photonic efficiency of 7.06% towards H2 evolution and a degradation rate of 4.07 × 10−2 min−1 towards 2-chlorophenol (2-CP). Density functional theory (DFT) investigations determine that B-doping (p-type) enhances graphene stability on Cu0 while N-doping (n-type) increases the reduction potential of Cu0 relative to H+ reduction potential. X-ray photoelectron spectroscopy reveals that increasing the B:N ratio increases p-type BC2O while decreasing n-type pyridinic-N in graphene thus altering the interlayer electron density. Isotopic labelling experiments determine water reduction as the main mechanism by which H2 is produced over B/N-graphene-coated Cu/TiO2. The reactive species involved in the degradation of 2-CP are holes (h+), hydroxyl radical (OH), and O2•-, of which superoxide (O2•-) plays the major role. This work displays B/N -graphene-coated Cu/TiO2 as a potential photocatalyst for large-scale H2 production and 2-CP degradation.

Organisationseinheit(en)
Institut für Technische Chemie
Institut für Physikalische Chemie und Elektrochemie
Laboratorium für Nano- und Quantenengineering
Externe Organisation(en)
Technical University of Kenya (TU-K)
Swansea University
University of South Africa
University of KwaZulu-Natal
Rheinische Friedrich-Wilhelms-Universität Bonn
Staatliche Universität Sankt Petersburg
Typ
Artikel
Journal
Journal of Environmental Management
Band
311
ISSN
0301-4797
Publikationsdatum
06.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Environmental engineering, Abfallwirtschaft und -entsorgung, Management, Monitoring, Politik und Recht
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1016/j.jenvman.2022.114822 (Zugang: Geschlossen)